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Abstract

The nonlinear frequency response characteristics of a two-degree-of-freedom torsional system with a
significant dry friction controlled path are studied, when excited by sinusoidal torque under a mean load. An
analytical solution is first developed for a simplified system subjected to continuous slipping motions. The
nature of super-harmonic peaks as generated by the dry friction nonlinearity is efficiently found. The effect of a
non-zero mean load is also determined and qualitatively understood. Further, a refined multi-term harmonic
balance method (MHBM) is proposed that includes up to 12 terms. It is used to study an automotive drive train
system that experiences significant stick–slip motions. Associated computational issues including the selection
of initial conditions are addressed. Studies show that the mean load could induce asymmetric stick–slip motions
and accordingly it has significant effect on time and frequency domain responses. Reasons for the occurrence of
super-harmonic resonant peaks and transitional peaks are investigated. Finally, our MHBM is applied to the
conventional single-degree-of-freedom system where the spring path exists in parallel with a dry friction damper
(Den Hartog’s problem). Our predictions match well with Den Hartog’s analytical solution. Den Hartog’s
system differs, in terms of the dynamic behavior, from our torsional system (with a sole dry friction path).
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Dry friction elements are commonly found in mechanical systems and yet much of prior
research has focused on the dry friction damper and its characterization [1–6]. Den Hartog [1]
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

C torsional viscous damping coefficient
D differential operator matrix
f function
I torsional inertia
H characteristic matrix
J Jacobian matrix
K torsional stiffness
P period
R residue vector
t time (dimensional)
T torque

Greek letters

d relative angular displacement
� tolerance
z viscous damping ratio
y absolute angular displacement
m friction coefficient
s conditioning factor
t dimensionless time
f phase angle
c phase lag
O excitation frequency (dimensionless)
o excitation frequency (rad/s)
D discrete Fourier transform matrix

Subscripts

1,2,3 inertial element indices
e engine
f friction
k kinetic
m mean
max maximum

min minimum
n natural frequency
p fluctuating component or perturbation
s static
sf saturation

Superscripts

_ dimensional value
. first derivative with respect to time
.. second derivative with respect to time
0 first derivative with respect to dimen-

sionless time
00 second derivative with respect to di-

mensionless time
�1 inverse
+ pseudo-inverse
T transpose

Operators

j j absolute value
kk Euclidean or L2 norm
hit time-average operator

Abbreviations

max maximum value
min minimum value
rms root-mean-square value
DFT discrete Fourier transform
MHBMmulti-term harmonic balance method
HBM one-term harmonic balance method
sdof single-degree-of-freedom system
TCC torque converter clutch
2dof two-degree-of-freedom system
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initiated work in this area by analytically determining the forced harmonic response of a single-
degree-of-freedom (sdof) system with combined Coulomb and viscous friction elements. But his
solution was limited to no more than two stops. Pratt and Williams [2] extended Den Hartog’s
work and calculated the system response with multiple lock-ups by using a numerical shooting
method. Wang [3] developed an analytical solution for the periodic response of a bi-linear
hysteresis friction system. However, numerical iterations were still needed to match the solutions
obtained from stick and slip states. Further, Menq and Yang [4], and Wang and Chen [5] have
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used multi-term harmonic balance methods (MHBM) to find the dynamic response of a
bi-linear hysteresis problem. Overall, three common features exist among the formulations
that have been employed by many researchers [1–6]. First, only the primary harmonic resonances
are examined under sinusoidal excitation. Second, a spring path is placed in parallel with the
dry friction element, thus having two parallel paths for force transmission. Third, the satu-
ration friction force is assumed to be small; this is obviously valid from the friction damper
standpoint.
In our study we examine the dry friction element in those situations where it is a key

path in transmitting mechanical power in real-life torsional systems rather than acting as a pure
friction damper. For example, the controlled slip clutch technology is now being widely
used in automotive drive train systems to increase fuel efficiency and to improve ride quality
[7–10]. Clutch systems such as the automotive torque converter clutch (TCC) [7], smart
clutch [8] and dual clutch transmission [9,10] employ the dry friction element as the sole or
dominant power transmission path. The spring element is usually in series (but not in parallel)
with the dry friction element. The scientific literature on such torsional problems is sparse.
Recently, Duan and Singh [11] studied the TCC sub-system using numerical methods
and constructed the nonlinear frequency responses based on the cyclic time histories under
sinusoidal excitations in the presence of mean torques. However, a thorough understanding
of the nonlinear characteristics is yet to be achieved. For instance, the existence of super-
harmonics has not been demonstrated, especially when a mean torque load is also applied. This
article will focus on the above-mentioned issues and propose semi-analytical methods for a two-
degree-of-freedom (2dof) torsional system with a single dry friction element of relatively high
saturation torque.
2. Problem formulation

2.1. Physical system and governing equations

The 2dof definite torsional system of Fig. 1 represents, in a generic sense, key features
of the automotive clutch systems [7,8,11]. The dry friction Tf 12 is the sole path that transmits
torque from the flywheel to the downstream driveline system. Here, Ī1 represents the
combined torsional inertia of flywheel, front cover and impeller, Ī2 is the inertia of friction
shoe, and Ī3 is the lumped inertia of transmission, differential and vehicle. Further, Ī3 is
reasonably approximated as a grounded inertia since it is substantial compared to Ī1 and Ī2
during the typical TCC operation, i.e. in a high gear position [7,12]. The governing equations for
this 2dof torsional system are

Ī1
€̄y1 þ T̄ f 12ðtÞ ¼ T̄eðt̄Þ ¼ T̄m þ T̄p sinðōt̄Þ; (1a)

Ī2
€̄y2 þ C̄23

_̄y2 þ K̄23ȳ2 ¼ T̄ f 12ðtÞ: (1b)

Here, ȳ1 and ȳ2 are the absolute angular displacements, C̄23 is the lumped viscous damping
between the friction shoe and the rest of the driveline, K̄23 is the linear torsional stiffness, and
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Fig. 1. Schematic of the 2dof torsional automotive dry friction clutch system. (a) Nonlinear model, (b) linear system

with viscous damper. All parameters and variables have dimensions.
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T̄eðt̄Þ is the engine torque excitation composed of mean torque T̄m ¼ hT̄eit̄ and pulsating T̄pðt̄Þ
components; here hit̄ is the time-average operator. The pulsating torque generally contains many
harmonic (or torque order) components. However, in this study we will only consider one term,
i.e. T̄eðt̄Þ ¼ T̄m þ T̄p sinðōt̄Þ; where ō ¼ ðNe=2ÞŌe is the dominant frequency for a multi-cylinder
engine [13]; here, Ne is the number of engine cylinders and Ōe is the engine speed.
In Eq. (1), T̄ f 12ðtÞ ¼ T̄ sf f ð _̄y1 �

_̄y2Þ is the nonlinear friction torque, which is a function ð f Þ of the
relative velocity _̄y1 �

_̄y2 across the friction interface, and T̄ sf represents the saturation friction
torque. Further, the classic Coulomb model is used and static and kinetic friction coefficients are
assumed to be the same. The normal force on the friction interface remains unchanged and the
friction torque T̄ sf is accordingly constant during the slip state.
The governing equations (1a,b) are then non-dimensionalized for three reasons. First, this

process would reduce the number of system parameters and would permit more efficient
parametric studies. Second, the numerical integration (or iteration) procedure is easier with a
dimensionless formulation. Finally, the resulting dimensionless frequency would help in mapping
the nonlinear frequency response characteristics. The dimensionless parameters are given as
follows; also refer to Nomenclature for identification.

ōn ¼

ffiffiffiffiffiffiffiffi
K̄23

Ī2

s
; I1 ¼

Ī1

Ī2
; I2 ¼

Ī2

Ī2
¼ 1:0; z ¼

C̄23

2
ffiffiffiffiffiffiffiffiffiffiffiffi
K̄23Ī2
p ; (2a2d)

Tm ¼
T̄m

T̄ sf

; Tp ¼
T̄p

T̄ sf

; y1 ¼
ȳ1K̄23

T̄ sf

; y2 ¼
ȳ2K̄23

T̄ sf

; (2e2h)

O ¼
ō
ōn

; t ¼ ōnt̄: (2i,j)

Thus, the governing equations in dimensionless form are as follows where derivatives
(superscripts 0 and 00) are with respect to dimensionless time t:

I1y
00
1 þ f ðy01 � y02Þ ¼ Tm þ Tp sinðOtÞ; (3a)
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y002 þ 2zy
0
2 þ y2 ¼ f ðy01 � y02Þ: (3b)

For the case where relative motions are of interest, define d1ðtÞ ¼ y1 � y2 and d2ðtÞ ¼ y2 � y3 ¼ y2
since y3 ¼ 0 and rewrite the governing equations as

I1d
00
1 � 2zI1d

0
2 � I1d2 þ ð1þ I1Þf ðd

0
1Þ ¼ Tm þ Tp sinðOtÞ; (4a)

d002 þ 2zd
0
2 þ d2 ¼ f ðd01Þ: (4b)

2.2. Objectives

The first major objective is to develop semi-analytical methods and determine the
harmonic and super-harmonic responses of the torsional system of Fig. 1(a) and as
described by Eq. (4). For the sake of illustration and validation, we will also apply
our method to the sdof of Fig. 2 that has been used by many researchers [1,2,14]. For
instance, Den Hartog obtained a closed-form solution under sinusoidal excitation by
assuming non-stop frictional oscillations [1]. In this article, we will extend his study to a
system with a single dry friction path and subject it to a sinusoidal excitation in the
presence of a mean load. By obtaining a closed-form solution to this simplified system, better
qualitative understanding of the nonlinear characteristics could be obtained. Further, in those
cases where multiple-stops take place, time domain integration methods are usually employed
[2,6]. However, the solution process is time-intensive since the numerical integration step has to be
very small to capture the stick–slip transitions. Also, it takes significant time to obtain a steady-
state response, especially for a lightly damped system. Some researchers [5,14] also utilized the
incremental harmonic balance methods (IHBM) to examine the friction damper that was placed
in parallel with spring elements. However, their methods are generally limited to three harmonics.
This is not sufficient for our system since significant stick–slip motions could take place.
Accordingly, in this article, a refined multi-term harmonic balance method (MHBM) that can
accommodate up to 12 harmonics is proposed to predict the nonlinear characteristics in a more
efficient way.
The second major objective is to generate the nonlinear frequency response characteristics of a

torsional system with a dry friction controlled path and in particular to demonstrate the
existence of super-harmonic resonances. Much of the prior work on dry friction damper
system (as in Fig. 2) is limited to an examination of response in the vicinity of primary
harmonic resonance [4,5,14]. However, we intend to show that significant super-
harmonic resonances could exist in the system of Fig. 1(a). They are also controlled
by the mean torque load and they could even dominate the time domain responses.
To clearly show the super-harmonic resonances, the nonlinear frequency response maps
will be constructed from the calculated steady-state cyclic time histories. Two kinds of
frequency domain maps are presented in the subsequent sections. The first is the max–min map
that is generated by picking the maximum (max) and minimum (min) response amplitudes at the
excitation frequency ðOÞ of interest; the second is the root-mean-square (rms) map by calculating
the rms values of time history at each frequency. Also, the mean (dc term) values are plotted over
the O range.
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Fig. 2. Conventional friction damper system. (a) 2dof semi-definite system, (b) sdof definite system (Den Hartog’s

model [1]). All parameters and variables have dimensions.
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3. Linear system analysis

For an automotive driveline coupled with a clutch, the whole system as in Fig. 1(a) may be
modeled as a linear system under two premises: (1) assume the pure stick condition or (2) replace
the dry friction element by a linear viscous damper. However, under the first premise, with a
change in the inertia (for example, from I2 to I1 þ I2) and in the degree of freedom, the essential
system properties such as natural frequencies and modes of the downstream sub-system will
significantly change. Thus it is not suitable for benchmark studies. Consequently, in this section,
we will analyze a linear system coupled by a viscous damper as shown in Fig. 1(b) using the second
premise. The governing equations are obtained by replacing f ðy01 � y02Þ in Eq. (4) with 2z1ðy

0
1 � y02Þ

where z1 ¼ C̄12= 2
ffiffiffiffiffiffiffiffi
KI2
p� �

:

I1d
00
1 þ ð1þ I1Þ2z1d

0
1 � 2zI1d

0
2 � I1d2 ¼ Tm þ Tp sinðOtÞ; (5a)

d002 þ 2zd
0
2 þ d2 ¼ 2z1d

0
1: (5b)

A closer look at the above equations reveals that there has to be a mean velocity for d01 to balance
the mean torque Tm under the dynamic condition. Further, Tm will be carried on to d2 through
the viscous coupling. By assuming harmonic solutions, the mean part can be very easily obtained
where hir implies time-average:

hd01ðtÞit ¼ Tm=2z1; hd2ðtÞit ¼ Tm: (6a,b)

Note that these values remain constant as O changes. One could obtain complete analytical

solutions for d01ðtÞand but the resulting expressions would be tediously long. Thus these are not
included here. Rather, solutions are conveniently obtained by using a conventional numerical
integration scheme such as Runge–Kutta. Sample frequency responses are presented in Fig. 3. It is
seen that the relative velocity maintains an almost constant level except around O ¼ 1:0: As
evident from Fig. 3(b), only the primary harmonic resonance appears in d2 as it should for a linear
system. Numerical solutions confirm the analytical mean velocity hd01ðtÞit and mean displacement
hd2ðtÞit as observed in Fig. 3.
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Fig. 3. Linear system frequency response for I1 ¼ 0:01; z1 ¼ 0:4; z ¼ 0:001; Tm ¼ 0:5; Tp ¼ 4:5: (a) Max-mean-min
frequency responses of d01; (b) max–min frequency response of d2:
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4. Analytical solution using one-term harmonic balance method (HBM)

4.1. Closed-form solution to a simplified torsional system

First, an approximate analytical solution based on HBM is constructed for a simplified system
to qualitatively establish the nature of nonlinear frequency responses and super-harmonic



ARTICLE IN PRESS

C. Duan, R. Singh / Journal of Sound and Vibration 285 (2005) 803–834810
resonances. In this simplified system (of Fig. 1(a)) we assume that I151:0 and continuous slipping
motion takes place across the friction interface. Further, d25d1 and d025d01 are assumed. These
assumptions are reasonable because the displacement and velocity of I2 are constrained by the
torsional spring and the viscous damper, respectively. Conversely, the dry frictional path, unlike
the viscous damper which can at least constrain the velocity, cannot limit motions of I1 especially
in the presence of Tm: Thus, we further approximate Eq. (4) as

I1d
00
1 þ f ðd01Þ ¼ Tm þ Tp sinðOtÞ; (7a)

d002 þ 2zd
0
2 þ d2 ¼ f ðd01Þ: (7b)

The above formulation essentially de-couples the 2dof definite system into two sdof sub-systems
as shown in Figs. 4(a) and (b), respectively. Next, consider the system of Fig. 4(a) and Eq. (7a).
The relative velocity and acceleration across the frictional interface, under harmonic excitation,
are assumed as follows where the mean velocity A is a consequence of Tm; B is the amplitude of
dynamic velocity and f is the phase lag:

d01 ¼ A þ B sinðOtþ fÞ; d001 ¼ BO cosðOtþ fÞ: (8a,b)

Assume profiles for relative velocity and corresponding friction torque as illustrated in Fig. 5.
Note that an asymmetric slip motion occurs due to the mean velocity and the corresponding
friction torque. i.e. d0ðtÞa� d0ðtþ P=2Þ and Tf ðtÞa� Tf ðtþ P=2Þ; where P ¼ 2p=O is the
period. For continuous slipping motions, different amplitudes corresponding to positive or
negative slip result due to the bias term A. However, in the case of stick–slip as explored in the
subsequent section, the asymmetry could be introduced by either a bias term or even order
harmonics. The transition times t1 and t2 (when Tf undergoes an abrupt change) can be
determined by setting d01 ¼ 0 as

Ot1 þ f ¼ �sin�1
A

B
; t1 ¼

�sin�1A=B � f
O

; (9a,b)

Ot2 þ f ¼ pþ sin�1
A

B
; t2 ¼

pþ sin�1A=B � f
O

: (10a,b)
TT  = T  + T  sin(Ωτ)

I1

me p

δ δ1

fT
2I

f

ζ

2

K

(a) (b)

Fig. 4. Simplifications to Fig. 1(a) yield two de-coupled sub-systems. (a) Nonlinear sub-system with dry friction, (b)

linear sub-system. Dimensionless parameters and variables are shown here.
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The corresponding friction torque is seen as follows:

Tf ðtÞ ¼
1:0; t1ptot2;

�1:0; t2ptoP þ t1:

(
(11)

Approximate the above expression using a truncated Fourier series as

Tf ðtÞ ¼
Tf 0

2
þ
XN
n¼1

Tcn cosðnOtÞ þ Tsn sinðnOtÞ; (12a)

Tf 0 ¼
2

P

Z Pþt1

t1
Tf ðtÞdt ¼

O
p

t2 � t1 �
p
O

� �
; (12b)

Tcn ¼
2

P

Z Pþt1

t1
Tf ðtÞ cosðnOtÞdt ¼

2

np
½sinðnOt2Þ � sinðnOt1Þ�; (12c)

Tsn ¼
2

P

Z Pþt1

t1
Tf ðtÞ sinðnOtÞdt ¼

�2

np
½cosðnOt2Þ � cosðnOt1Þ�: (12d)

Substituting Tf 0; Tc1 and Ts1 into Eq. (7a) and applying the harmonic balance to both sides, we
find the following nonlinear algebraic equations by sorting the like terms:

O
p

t2 � t1 �
p
O

� �
¼ Tm; (13a)
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I1BO cosðfÞ þ
2

p
½sinðOt2Þ � sinðOt1Þ� ¼ 0; (13b)

�I1BO sinðfÞ �
2

p
½cosðOt2Þ � cosðOt1Þ� ¼ Tp: (13c)

Further, insert Eqs. (9b) and (10b) into Eq. (13a) to find

sin�1
A

B
¼

Tmp
2

: (14)

Since sin�1ðA=BÞ is bounded in ½�0:5p 0:5p�; it is noted that �1pTmp1: Analytically, if Tm is
beyond such bounds, then either pure positive slip (Tm41) or pure negative slip ðTmo� 1Þ
motion takes place. In either case, the transmitted frictional torque f ðd01Þ will always assume a
constant value ð
1Þ accordingly. That would result in a constant relative displacement d2: Use
trigonometric relations to observe the following:

sinðOt2Þ � sinðOt1Þ ¼ 2 cos
Tmp
2

	 

sinðfÞ; (15a)

cosðOt2Þ � cosðOt1Þ ¼ �2 cos
Tmp
2

	 

cosðfÞ: (15b)

Substitute Eq. (15) into Eqs. (13b) and (13c), respectively, and further simplify the nonlinear
algebraic equations as

I1BO cosðfÞ þ
4

p
cos

Tmp
2

sinðfÞ ¼ 0; (16a)

�I1BO sinðfÞ þ
4

p
cos

Tmp
2

cosðfÞ ¼ Tp: (16b)

Finally, the closed-form solutions of A;B and f of Eq. (8), corresponding to Fig. 4(a), can be
obtained as

A ¼ B sin
Tmp
2

; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

pp2 � 16 cos2ðTmp=2Þ
q

I1pO
; (17a,b)

f ¼ �sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

pp2 � 16 cos2ðTmp=2Þ
q

Tpp
: (17c)

Although A and B change with O; f retains a constant value that is solely determined by the Tm

and Tp: This is different from the first-order linear time-invariant system for which the f varies
with O [15]. Also, it differs from the classical dry friction damper system where a discontinuous
jump in f is seen at the primary resonance [1].
Once d01ðtÞ is obtained, the corresponding Tf ðtÞ is also determined, which now acts as an exciter

for the sub-system 2 of Fig. 4(b). Feeding the solution of Tf ðtÞ into Eq. (7b), an analytical
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solution for d2ðtÞ is obtained:

d2ðtÞ ¼ Tm þ
XN
n¼1

Tcn

Ln

cosðnOtþ cnÞ þ
Tsn

Ln

sinðnOtþ cnÞ

� 

; (18a)

Ln ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2O2Þ2 þ ð2nzOÞ2
q

; cn ¼ �tan�1
2nzO

1� n2O2
: (18b,c)

4.2. Analytical and numerical solutions

The analytical solutions obtained in previous section clearly reveal multiple harmonics in
steady-state response of d2ðtÞ and thereby raise the possibility of super-harmonic resonances.
Typical analytical results in both time and frequency domains are shown in Figs. 6 and 7. These
are compared with numerical solutions from a standard Runge–Kutta fifth (fourth)-order
integration scheme with step size adaptation due to Dormand and Prince [16]. Excellent match
between analytical and numerical solutions is achieved. Minor differences in the frequency
response of velocity d01 are noticed at O ¼ 1:0 and 0.5. This is because the analytical solution does
not account for a coupling between the sub-systems that is maximized at primary and super-
harmonic resonances. And, differences in time domain velocity d01 result seem to produce minimal
effects in the frequency response maps of d2 as seen in Fig. 7(b). Unlike the response for a linear
system as observed in Fig. 3(b), super-harmonic resonances are generated in Fig. 7(b) by the dry
friction nonlinearity at O ¼ 1

3
and 1

2
; respectively.

Although the proposed analytical solution is limited to a simplified system with pure (or almost
pure) slipping motion, the influence of Tm can be easily identified. From Eq. (17b), it is seen that
the mean velocity A vanishes as Tm goes to zero. In this case, the friction interface would
experience symmetric positive and negative slipping motions. These in turn would generate a
symmetric square profile of the friction torque in Fig. 5. Thus, only the odd orders (1/3, 1/5,y) of
Tf are generated and consequently only the odd-order super-harmonic resonances would occur in
the response d2: Additionally, Fig. 8 shows that even a very small Tm will generate even orders
(such as 1/2 and 1/4). For example, the 1/2 super-harmonic resonance is clearly observed in Fig. 8
at O ¼ 0:5 when Tm ¼ 0:2:
4.3. Limitations

The HBM has been successful in qualitatively establishing the nature of super-harmonic
resonances. Although the approximate analytical solution quickly predicts responses,
it is valid only for a very simplified problem. In a more realistic driveline system,
ignificant stick–slip motions occur and the assumption of continuous slipping motions
is no longer valid. Thus, the analytical solution cannot provide accurate results for
the system of Fig. 1(a), as evident from Fig. 9 for frequency responses and from Fig. 10 for
corresponding time histories. For this reason, a refined MHBM is proposed in the next section to
reasonably approximate the steady-state stick–slip motions under harmonic torque excitation
given a mean load.



ARTICLE IN PRESS

0 5 10 15 20 25 30 35 40 45 50
-500

0

500

1000

1500
' 1

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

T
f

0 5 10 15 20 25 30
-200

0

200

400

600

800

1000

' 1

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

T
f

τ

τ

τ

τ

δ
δ

(a)

(b)

Fig. 6. Time histories for system of Fig. 4. Given I1 ¼ 0:01; z ¼ 0:001; Tm ¼ 0:5; Tp ¼ 4:5: (a) d01 and Tf at O ¼ 0:5:
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5. Refined MHBM

5.1. Formulation

Consider the torsional system of Fig. 1(a) again and observe that no spring element exists in
parallel with the dry friction element. Consequently, the relative displacement d1ðtÞ would grow
monotonically with a mean velocity and thus it cannot be defined as a periodic function under the
effect of Tm: Instead, the relative velocity d01ðtÞ is assumed to be periodic and is expressed as a
truncated Fourier series as

d01ðtÞ ¼ ao þ
Xnh

n¼1

a2n�1 sinðnOtÞ þ a2n cosðnOtÞ: (19a)

Similarly, the relative displacement d2ðtÞ and the nonlinear friction torque f ðd01Þ are expanded in
the form of Fourier series:

d2ðtÞ ¼ bo þ
Xnh

n¼1

b2n�1 sinðnOtÞ þ b2n cosðnOtÞ; (19b)

f ðd01Þ ¼ co þ
Xnh

n¼1

c2n�1 sinðnOtÞ þ c2n cosðnOtÞ: (19c)

First, substitute Eqs. (19b) and (19c) into Eq. (7b) and sort out the like terms on both sides to
yield

bo ¼ co; b2n�1ð1� n2O2Þ � b2n2z2nO ¼ c2n�1; (20a,b)

b2n�12z2nOþ b2nð1� n2O2Þ ¼ c2n: (20c)

Represent the above in matrix form to yield the following whereH is a characteristic matrix of the
linear sub-system of Fig. 4(b):

H b ¼ c; b ¼ H�1 c; (21a,b)

b ¼ bo b1 b2 � � � b2nh

� �T
; c ¼ c0 c1 c2 � � � c2nh

� �T
; (21c,d)

H ¼

1

. .
.

1� n2O2 �2znO

2znO 1� n2O2

" #

. .
.

2
666666664

3
777777775
: (21e)

The introduction of H would efficiently reduce the original 2dof system problem into a sdof
system problem. Further, the characteristic matrix concept can be extended to a linear sub-system
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of very large dimension, thus allowing a nonlinear path synthesis concept similar to Rook’s
formulation [17].
The time domain response d01ðtÞ can be written in terms of a discrete vector d

0
1 by utilizing a

discrete Fourier transform (DFT) matrix D where a is the corresponding Fourier coefficients of
d01ðtÞ [18]. Generally, the number of discrete points to represent a steady-state response cycle is a
multiple of 2, i.e. N ¼ 2p: This is consistent with the requirement of a fast Fourier transform
routine:

d01ðtÞ ¼ d01ðtoÞ d01ðt1Þ � � � d01ðtN�1Þ
� �T

¼ D a : (22a)

Similarly:

d2ðtÞ ¼ D b : (22b)

Introduce a differential operator D as

D ¼

0

. .
.

0 �n

n 0

� �

. .
.

2
66666664

3
77777775
: (23)

Thus, we have

d01ðtÞ ¼ ODD a; d02ðtÞ ¼ ODD b; d002ðtÞ ¼ O2 DD2 b : (24a2c)

The nonlinear torque is also written as f ðd01Þ ¼ D c; which implies c ¼ Dþ f where Dþ
¼

ðDT D Þ
�1DT : The torque excitation is also defined in the form TeðtÞ ¼ DQ; where Q is a known

vector. Substitute Eqs. (19)–(24) into Eq. (4) and define the residue DR in the time domain as

DR ¼ I1ODD aþI1O2 DD2 bþD c�DQ : (25)

Further, substituting b ¼ H�1 c ¼ H�1Dþ f and pre-multiplying both sides by Dþ; the residue in
the frequency domain (R) is obtained:

R ¼ I1OD aþ I1O2D2H�1Dþ
þ Dþ

h i
f �Q : (26)

Essentially, our MHBMminimizes R in the frequency domain by using an iterative approach. For
instance, the Newton–Raphson iteration has been widely used [14,17,18]. In this process, a
Jacobian Matrix J is first defined as

J ¼
qR

q a
¼ I1ODþ’ I1O2D2H�1Dþ

þ Dþ
h i q f

q a
: (27)

Here, q f =q a can be calculated by the chain rule as

q f

q a
¼

q f

qd01

qd01
q a

¼
q f

qd01
D : (28)
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At each iterative step, the value of a is updated as

akþ1 ¼ ak � J�1
k Rk : (29)

5.2. Computational issues and choice of initial conditions

The following error criteria are usually followed [5,14,18,21] where � is a pre-defined numerical
tolerance:

kakþ1 � akkp�; kRkþ1 � Rkkp�: (30a,b)

Here, kk represents the Euclidean or L2 norm. When the Jacobian matrix is ill-conditioned, the
first criterion (30a) is more reliable [19]. The chief benefit of the Newton–Raphson technique is its
quadratic convergence feature, i.e. kRkþ1 � Rkk ¼ OkRk � Rk�1k

2; where O represents order of
magnitude. To take advantage of the quick convergence ability, the partial derivative of the
residue has to be evaluated as in Eq. (27). This implies the nonlinear function has to be continuous
as indicated in Eq. (28). This is however not the case for the classical Coulomb friction
formulation in which a discontinuity exists at zero velocity. Therefore, a smoothening or
conditioning procedure, using the hyperbolic or arctangent function, has been usually employed
by some researchers [11,18,20,21]. In our study, a hyperbolic tangent function is used to
approximate the classic Coulomb friction function:

Tf ¼ f ðd0
1
Þ ’ tanhðsd01Þ;

qf

qd01
¼ s½1� tanh2ðsd01Þ�: (31a,b)

Duan and Singh [11] have shown that the conditioning factor s should be very carefully chosen to
ensure an appropriate representation of the theoretical discontinuous Coulomb friction when a
direct Runge–Kutta fourth (fifth) numerical integration scheme is employed. Kim et al. [21]
discussed the effect of the ‘‘smoothening factor’’ on nonlinear frequency responses with
application of clearance type nonlinearity. Our harmonic balance method is also sensitive to the
choice of s: The chief reason lies in the calculation of q f =q d01 that plays an important role in the
Jacobian matrix:

q f

q d01
¼ diag

qf

qd01

����
t¼t0

qf

qd01

����
t¼t1

� � �
qf

qd01

����
t¼tN�1

" #
: (32)

As evident from Eq. (31a), a lower value of s would make the stick to slip transition more smooth
and thus it is desirable in terms of numerical convergence. However, a more smooth transition
would indicate fewer harmonics are contained in the approximated friction torque as explained by
the Gibbs phenomena. Consequently, the calculated response may not be sufficiently accurate
especially when the super-harmonic components significantly contribute to the overall response.
On the other hand, a high value of s is intuitively preferred. Mathematically, as the value of s
increases, the approximated Tf ¼ f ðd01Þ asymptotically converges to the discontinuous Coulomb
friction. However, the values of qf =qd01 vary from relatively large numbers (corresponding to the
stick state) to almost zeros (corresponding to the slip state) as obtained by Eq. (31b). The order of
magnitude difference in such numerical values would ultimately contribute to the numerical
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stiffness of the Jacobian matrix that could be defined by the ratio of the largest to the smallest
non-zero local eigenvalues [22]. The widely separated eigenvalues in turn would indicate the
coexistence of slowly varying and rapidly varying responses when the solution is slightly
perturbed. This would require unreasonably small calculation steps to warrant numerical stability.
Thus it would hinder convergence especially when significant stick–slip motions take place. We
selected s ¼ Oð50Þ when 256 discrete points are used to represent the continuous time history
within an excitation cycle. The resulting responses have been validated by using a discontinuous
numerical integration scheme that is already documented in an earlier study [11].
Further, the initial guess of solution a0 is very important for the predictor-corrector type

exercises [23]. If a0 is far away from true solution, the convergence speed of Newton–Raphson is
limited because the quadratic convergence seems to occur only during last steps. In the worst
possible case, convergence may not be achieved at all and the solution could diverge. But much of
the previous work on this topic [4,5,14,18] does not address this issue in sufficient detail. One
approach is to just make a random guess [18]. Further, Wang and Chen [5] have proposed that
one could use the first-order (one-term) harmonic balance solution as the initial guess for a bi-
linear hysteresis problem. But as seen in Fig. 9, our one-term harmonic balance solution is still
sufficiently far from the true solution. Consequently, we propose the following scheme. First,
determine the stick-to-slip boundaries prior to a nonlinear analysis, using a similar procedure
introduced by Duan and Singh [11]. For the sake of clarity, this procedure is briefly introduced
here. When the frictional element is under the pure stick condition, Ī1 and Ī2 stick together to
form a single rigid body and the system in Fig. 1(a) degenerates into a sdof system. Consequently,
the governing equation, in the dimensionless form, is as

ðI1 þ 1Þd
00
þ 2zd0 þ d ¼ Tm þ Tp sinðOtÞ: (33)

The corresponding steady-state forced harmonic response is

dðtÞ ¼ Tm þ
Tpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� I1 þ 1ð ÞO2Þ2 þ ð2zOÞ2
q sinðOtþ jÞ; (34a)

j ¼ �tan�1
2zO

1� ðI1 þ 1ÞO2
: (34b)

Under the pure stick condition, the frictional torque in the interface is the difference
between the excitation torque and the inertial torque I1d

00; where d00 ¼ �O2d is obtained
from Eq. (34a):

Tf ðtÞ ¼ ½Tm þ Tp sinðOtÞ� � ½I1ð�O2dðtÞÞ�; (35)

Tf ðtÞ ¼ Tm þ Tp sinðOtÞ þ I1
TpO2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� ðI1 þ 1ÞO2Þ
2
þ ð2zOÞ2

q sinðOtþ jÞ: (36)

Thus, the criterion to determine the stick-to-slip transition is defined as follows where j j represents
the absolute value:

jTf j4T sf : (37)
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Using this criterion, the frequency regime(s) over which the pure stick condition takes place can be
found by numerically sweeping the excitation frequency in either downward or upward
direction. Additionally, the determination of stick-to-slip boundaries would not only
bound the frequency regime over which the nonlinear analysis is needed, but it could also
provide a good clue regarding the initial frequency for a sweep up or down; Note that the
zeros are natural choices in the initial guess of a0 : This way, the solution at the initial
frequency is easily obtained. Given a high-frequency resolution, the response at subsequent
frequencies can be conveniently determined by assuming the solution at the previous frequency as
the initial guess.
6. Nonlinear responses and super-harmonics

6.1. Typical nonlinear responses and effect of mean load

Table 1 lists typical parameters (in the dimensionless form) of an automotive driveline system.
As noted before, the saturated dry friction torque is generally high for a realistic TCC, in contrast
with the dry frictional damper system, for the following reasons: to increase the fuel efficiency by
allowing more power transmitted to the downstream system and to avoid thermal issues induced
by excessive slipping motions [7,24]. For example, the friction torque capacity of a typical dry
friction torque converter clutch is typically of the same order of magnitude as the peak dynamic
torque generated by a nominal multi-cylinder engine [24,25]. Further, unlike the simplified system
that was studied in Section 3, I1 representing flywheel, front cover and impeller is much higher
than I2 of the friction shoe assembly. Nonetheless, Duan and Singh [11] have shown that I2 can
still significantly affect the system dynamics.
The appearance of super-harmonic peaks is obviously related to the number of harmonics (n)

that must be included by the MHBM. In our study, 12 harmonics are used to construct the
stick–slip motions and accordingly, 12 terms are included in d2ðtÞ as these should be enough to
predict real-life periodic motions. Also, as more harmonics are included, the super-harmonic
resonances like 1/12, 1/13 and 1/14, etc. will be squeezed into a smaller frequency region and this
would pose some difficulty in distinguishing them. Thus, in our study, we will only show
the frequency range starting from O ¼ 0:12 and assume a minimal coupling effect between the
Table 1

Parameters (in the dimensionless form) used to study an automotive driveline system corresponding to Fig. 1(a)

Parameter Dimensionless value

I1 10–20

I2 1.0

z 0.02

K 1.0

T sf 1.0

Tm 0–0.8

Tp 0.5–2.0
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super-harmonics below O ¼ 0:12:Under the condition of significant stick–slip, a generic nonlinear
frequency response map of d2 is illustrated in Fig. 11. As shown, two types of peaks could be
present. The first type is the transitional peak which occurs as the frictional interface undergoes
sudden transition from a pure stick state to the stick–slip state. The second type is the resonant
peak which occurs at O ’ 1=n due to the system resonance effect.
Fig. 12 represents a typical nonlinear frequency response when significant stick–slip motions

occur. Fig. 13 shows a sample time history at O ¼ 0:23: The semi-analytical solutions match quite
well with numerical solutions. The difference in the Tf ðtÞ plot of Fig. 13(c) clearly illustrates the
Gibbs phenomena. Further, super-harmonic peaks in Fig. 12(b) can be seen at O ’

1=3; 1=4; 1=5; 1=7; etc. However, it should be noted that the peak response at O ¼ 1=2 cannot
be presumed to be a super-harmonic peak. In fact, it is a transitional peak, as evident from Fig.
12(a). When the system parameters and excitation change, the transition frequency will also
change. This transition frequency can be determined by the procedure introduced in Section 5.2,
ahead of the nonlinear calculation. Again, the calculated nonlinear frequency response of d2 is
much different from the anticipated linear system response for which a primary harmonic
resonance occurs at O ’ 1:0 as in Fig. 3(b). Instead, the super-harmonic peaks dominate the
response level at low frequencies and the primary harmonic resonance is not excited at all.
Further, it is noted that three harmonic terms are not sufficient to represent significant stick–slip
motions as shown in Fig. 12.
Again, the effect of Tm is investigated. Fig. 14 presents the nonlinear frequency responses for

Tm ¼ 0: Compare these with Fig. 12 and observe that the existence of non-zero Tm has an effect
on the frequency responses similar to the one discussed in Section 4 for a simplified system. When
Tm ¼ 0; symmetric stick–slip motions are strictly followed as seen in Fig. 14(a). But asymmetric
stick–slip motions take place at Tm ¼ 0:5 as observed in Fig. 12(a). Further, more super-harmonic
peaks are excited by the friction torque that is generated by the asymmetric stick–slip. For
example in Fig. 14, when Tm ¼ 0; super-harmonic resonances only occur around O ’ 1=4 and
1=6; but when Tm ¼ 0:5; resonances take place around O ’ 1=3; 1=4; 1=5; 1=7; etc. as shown
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in Fig. 12(b). However, under significant stick–slip motions, the generated friction torque as in
Fig. 13 is no longer a pulse excitation as in Figs. 6 and 10. It is hard to analytically predict which
super-harmonic peaks will appear unlike the simple case studied in Section 4. Nevertheless, semi-
analytical methods such as MHBM or numerical integration can be utilized to find the resonant
peaks.
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6.2. Effect of the number of harmonics on resonant peaks

As discussed in Section 4, the super-harmonic contents in Tf ðtÞ induced by pure slip or
stick–slip motions will generate super-harmonic response in d2ðtÞ: Accordingly, resonant peaks at
lower O as in Figs. 12(b) and 14(b) occur. However, in the case of significant stick–slip motions, it
does not mean the nth super-harmonic component of d2 would always dominate the time history
when excited at O ’ 1=n: For instance, consider the time history corresponding to the peak
around O ¼ 0:32 (1/3 super-harmonic peak) as shown in Fig. 15(a). The response is dictated by
the first four harmonics and the mean ðn ¼ 0Þ part. At the peak around O ’ 0:23 (1/4 super-
harmonic peak) in Fig. 15(b), the response is dictated by the first five harmonics and the mean
part. The dominance of the n ¼ 1 and 2 components is due to the sticking phase which prevails in
the stick–slip response. The difference in rms value responses as shown in Fig. 12(b) is due to the
involvement of more period-motions (or more harmonics) in the time history.
The mechanism of generating super-harmonic peaks discussed above can be further explained

by a 3-D response map that is constructed in Fig. 16. The x coordinate indicates the harmonic
order n (including the dc part) of the response of d2; the y coordinate is the excitation frequency O
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and the z coordinate is the response amplitude d2: As seen in Fig. 16, n ¼ 0; 1 and 2 components
contribute much to the overall response over the entire frequency regime, which is consistent with
our observation at O ’ 0:32 and 0.23. As O moves down, more super-harmonic components get
involved. Accordingly, various resonant peaks are formulated.
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7. Effect of negative slope in friction formulation

Finally, we study a more general friction formulation, with different static ðmsÞ and kinetic ðmkÞ

friction coefficients. In the following formulation [26], mk has been normalized with respect to
msð¼ 1:0Þ; a is a factor that controls the exponentially decaying gradient and sgn is the signum
function.

Tf ðd
0
1Þ ¼ f ðd01Þ ¼

½mk þ ð1:0� mkÞe
�ajd01j� sgnðd01Þ; jd01j40;

½0 1:0�; d01 ¼ 0;

(
(38)

sgnðd01Þ ¼
d01
jd01j

; jd01j40;

0; d01 ¼ 0:

8<
: (39)

We can further condition the discontinuous formulation (38) by a hyperbolic-tangent function.

f ðd01Þ ¼ ½mk þ ð1:0� mkÞe
�ajd01j� tanhðsd01Þ; (40a)

qf

qd01
¼ s½mk þ ð1:0� mkÞe

�ajd01j�½1:0� tanh2ðsd01Þ� � að1:0� mkÞe
�ajd01jsgnðd01Þ tanhðsd

0
1Þ: (40b)

Note that when mko1:0; a negative slope ðqf =qd01o0Þ is found in the friction law. Insert f ðd01Þ and
qf =qd01 into Eqs. (26) and (28) and apply the MHBM formulation of Section 5 with the provision
that the system is still dynamically stable and the response is periodic. Consequently, only a minor
variation in mk is permitted.
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Fig. 17 compares the results for three values of mk (1.0, 0.95 and 0.9), given a ¼ 2: First, Fig.
17(a) shows that the stick-to-slip transition frequencies for all cases are almost identical as it
should be since the friction capacity that is determined by ms ð¼ 1:0Þ remains unchanged.
Differences in d01 values are also seen at lower frequencies. As shown in Fig. 17(b), it appears that
the downstream system response could be sensitive to mk: A minor change in mk here induces a
relatively large difference in d2rms; especially at the resonant frequencies. When mk is reduced, the
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Fig. 17. Frequency response for system of Fig. 1(a). Given I1 ¼ 10; z ¼ 0:02; Tm ¼ 0:5; Tp ¼ 1:5: (a) Max–min
frequency responses of d01: —, mk ¼ 1:0; ooo, mk ¼ 0:95; xxx, mk ¼ 0:9: (b) rms frequency response of d2: —, mk ¼ 1:0;
ooo, mk ¼ 0:95; xxx, mk ¼ 0:9:
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peak values of d2rms are lower. This is because of the reduced friction torque during the slip state
that is determined by the value of mk; this torque constitutes an equivalent excitation to the
downstream sub-system. Similar to the variation in d01; the differences in d2rms between three cases
are more visible at lower frequencies where significant stick–slip motions tend to occur. Of course,
a further decrease of mk will introduce numerical instabilities and chaotic responses. Those factors
will pose difficulties on the application of MHBM that assumes periodic responses. A subsequent
article will address this particular issue.
8. Comparison with conventional friction damper problem (Den Hartog’s system)

Finally, we examine the conventional sdof friction damper system of Fig. 2 that has been
studied by many researchers [1,2,14,20]. The governing equation is

Ī e
€̄dþ C̄ _̄dþ K̄ d̄þ T̄ f ð

_̄dÞ ¼ T̄me þ T̄pe sinðō t̄Þ; T̄ f ð
_̄dÞ ¼ T̄ sf f ð _̄dÞ: (41a,b)

Again, it is non-dimensionalized by introducing the parameters

on ¼

ffiffiffiffi
K

Ie

r
; z ¼

C̄

2
ffiffiffiffiffiffiffiffi
KIe

p ; d ¼
K̄ d̄
T̄ sf

; (42a2c)

Tm ¼
T̄me

T̄ sf

; Tp ¼
T̄pe

T̄ sf

; (42d,e)

O ¼
ō
ōn

; t ¼
t̄

ōn

: (42f,g)

The following dimensionless governing equation is obtained where derivatives are with
respect to t:

d00 þ 2zd0 þ dþ f ðd0Þ ¼ Tm þ Tp sinðOtÞ: (43)

First, note that Tm can be balanced out by the spring with a mean or static displacement hdit ¼
Tm: Thus the existence of non-zero Tm has no effect on the relative slip or stick–slip velocities.
This is quite different from our 2dof system of Fig. 1(a). This implies the friction interface in Fig. 2
would always experience symmetric stick–slip motion, i.e. d0ðtÞ ¼ �d0ðtþ P=2Þ: Indeed, this was
the basis of solution as originally proposed by Den Hartog [1]. Further, Eq. (41) can be simplified
by excluding Tm and by re-setting dðtÞ:

d00 þ 2zd0 þ dþ f ðd0Þ ¼ Tp sinðOtÞ: (44)

Den Hartog developed the analytical solutions of Eq. (44) for two cases: pure slipping motion and
two-stop motion. He also obtained a boundary (dashed line in Fig. 18) between the motions
without any stop and with two stops. Based on Den Hartog’s boundary, stick–slip motion tends
to occur in the low-frequency range when the friction force or torque is generally high. This is
consistent with our system of Fig. 1(a) as discussed in Section 6. Here, we employ the MHBM
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(proposed in Section 5) to find the stick–slip responses. For the sake of brevity, only the case of
z ¼ 0 and Tp ¼ 1:25 is compared. Fig. 18 compares the calculated responses and Den Hartog’s
analytical solution. A good match is observed in terms of the magnification factors
ðd0�peak=ðTp=KÞÞ and peak frequency ðf peakÞ: Minor differences are found around the f peak
regime. But these results could be improved by increasing n from 12 to 24. Further, as seen from
the 3-D response map in Fig. 19, only the first harmonic dominates the response over the entire
frequency regime. Although a third harmonic component is involved at lower O values, it is too
weak to generate an active super-harmonic peak. This explains the absence of super-harmonic
peaks in the sdof frequency responses, unlike the observations for the torsional system of Fig. 1(a)
we studied in this article.
9. Conclusion

The nonlinear frequency response characteristics of a torsional system with dry friction
controlled path have been studied. Three key contributions emerge. First, an analytical solution
based on one-term harmonic balance is developed for a simplified torsional system subjected to
continuous slipping motions. The nature of super-harmonic peaks as generated by the dry friction
nonlinearity is efficiently found. The effect of a non-zero mean load is also determined and
qualitatively understood. Second, a refined multi-term harmonic balance method (MHBM) is
proposed to study an automotive drive train system that experiences significant stick–slip
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motions. Our method includes up to 12 harmonics and yet yields responses in an efficient
manner. Associated computational issues with the conditioning factor are addressed
in detail. Moreover, a procedure to properly select the initial conditions is developed based on
the linear system theory. Two types of peaks are seen in nonlinear frequency responses:
transitional peaks and super-harmonic resonant peaks. The non-zero mean load in the mdof
system has an effect similar to the simplified system and it generates asymmetric stick–slip
motions. Further, studies have shown that the occurrence of super-harmonic resonant peaks is
also related to the number of harmonic terms included in assumed solutions especially over the
lower frequency regime. This is well explained by the 3-D response maps. Third, the conventional
sdof dry friction damper system (Den Hartog’s problem) in which a spring path is in parallel with
a dry friction path is revisited. Our results show that this conventional system differs, in terms of
the dynamic behavior, from our torsional system with a sole dry friction path (with a high
saturation torque). In particular, the mean load in our system dictates the nature of nonlinear
system responses. The sdof damper system response (Den Hartog’s problem) is controlled by the
primary harmonic resonance, unlike our torsional system (with a sole dry friction path) where
many super-harmonic resonant peaks are present. Future work will deal with the periodic and
transient response of the torsional system (with a dry friction path), as well as applications to real-
life automotive problems.
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